What's up Indiana,
It's amazing to see the Free Unison Producer Growth Hub reach 10,000 active members...
And become one of the top 10 groups on the entire platform in less than 1 month after launching 🚀
| | | | | The vibe in here is off the charts and I'm super impressed with the amount of contributions and value everyone is offering each other.
So building off this awesome success, we're putting together an exclusive premium club...
For those who are truly serious about producing professional-quality music as quickly & easily as possible 💿
| | | | | More exciting details will be revealed soon 🔥
Cheers, -Sep
P.S. If you haven't already, join the free Unison Producer Growth Hub and get free sample packs/courses here.
| | |
Sent to: ignoble.experiment@arconati.us
Unison Audio Inc., 455 Beach Crescent, Vancouver, BC V6Z 3E5, Canada | | | | The light of modern science has revealed to us many important secrets. In the dark ages there were but few books; it was then the fashion to write them in Latin; and as, from their costliness, they could only be obtained by men of wealth, so they could be understood alone by such as had enjoyed the advantages of education. Science is now easily accessible, but, though it is not necessary for us all to become philosophers, there is no good reason why people generally should not be acquainted with some of the most remarkable phenomena of the natural world. The inspired psalmist has said, "The works of the Lord are great, sought out of all them that have pleasure therein;" and it becomes all, according to their means and opportunities, to lay this truth to heart. We proceed now to consider some effects regarded as magical, which are satisfactorily explained on natural principles, beginning with mechanics. 31 An ability to construct wonderful or magical machines was manifest among the ancients. Archytas, a native of Tarentum, in Italy, who lived four hundred years before the birth of our Lord and Saviour, is said to have made a wooden dove, which flew and sustained itself for some time in the air. Other clever contrivances are also mentioned. "A magician," says D'Israeli, "was annoyed, as philosophers still are, by passengers in the street; and he, particularly so, by having horses led to drink under his window. He made a magical horse of wood, according to one of the books of Hermes, which perfectly answered his purpose, by frightening away the horses, or, rather, the grooms! The wooden horse, no doubt, gave some palpable kick." It is worthy of remark, that tales of ancient times must be received with caution. We find it necessary, even at a much later period. The tricks which now amuse or astonish the populace at a country fair, would be greatly exaggerated in a credulous age, and often assume even the most portentous colouring. Nor is it difficult to guess, and sometimes to discover, the stages of similar and great mystifications. The following instance is rather remarkable. On Charles v. entering Nuremberg, a celebrated German astronomer, whose real name was Johann Müller, but who styled himself Regiomontanus, exhibited some automata which he had constructed. These were an eagle of wood, which, placed on the gate of the32 city, rose up and flapped its wings, while the emperor was passing below; and a fly, made of steel, which walked round a table. Now all this is sufficiently credible. But what is the record of the chroniclers only a few years after? That the wooden eagle sprang from the tower and soared in the air; and that the steel fly flew three times round the emperor, and then alighted buzzing on his hand! In many instances, the mechanism of modern times is surprisingly minute. A watchmaker in London presented his majesty George iii. with a repeating watch he had constructed, set in a ring. Its size was something less than a silver two-pence; it contained one hundred-and-twenty-five different parts, and weighed, altogether, no more than five pennyweights and seven grains! In an exhibition of Maillardet, which the writer has seen, the lid of a box suddenly flew open, and a small bird of beautiful plumage started forth from its nest. The wings fluttered, and the bill opening with the tremulous motion peculiar to singing birds, it began to warble. After a succession of notes, whose sound well filled a large apartment, it retired to its nest, and the lid closed. Its performances occupied about four minutes. In the same exhibition were an automatic spider, a caterpillar, a mouse, and a serpent; all of which exhibited the peculiar movements of the living creatures. The spider was made of steel: it ran on the surface of a table for three minutes, and its course33 tended towards the middle of the table. The serpent crawled about in every direction, opened its mouth, hissed, and darted forth its tongue. Several years ago, a watchmaker, residing in a town in which the writer lived, made a working model of a steam-engine, the packing-case of which was a walnut-shell. On showing it one day to a gentleman, the machine was suddenly stopped, the mechanic remarking, "There is something wrong in one of the safety-valves." "Safety-valve!" exclaimed the observer; "I have not yet been able to detect the fly-wheel!" The most curious specimen of minute workmanship, however, with which we are acquainted, is a high-pressure engine, the work of a watchmaker having a stand at the Polytechnic Institution, and first exhibited in 1845. Each part was made according to scale, it worked by atmospheric pressure, in lieu of steam, with the greatest activity, yet it was so small, that it stood on a fourpenny-piece, with ground to spare, and, with the exception of the fly-wheel, it might be covered with a thimble. D'Alembert describes a flute-player, constructed by Vaucanson, which he saw exhibited at Paris in 1738. The writer has also seen one, in which a figure appeared seated, and then rose and played a tune, the motions of the fingers seeming to accord with the notes. He cannot answer for the music having been produced by the movements of the hands of the34 automaton. D'Alembert affirms, however, that the automaton of Vaucanson really projected the air with its lips against the embouchure of the instrument, producing the different octaves by expanding and contracting their openings, giving more or less air, and regulating the tones by its fingers, in the manner of living performers. The height of the figure, with the pedestal, containing some of the machinery, was nearly six feet; it commanded three octaves, several notes of which musicians find it difficult to produce. Some years ago, two automaton flute-players were exhibited in this country, of the size of life, which performed ten or twelve duets. That they actually played the flute might be proved, by placing the finger on any hole that was unstopped for a moment by the automata. M. Vaucanson produced a flageolet-player, who beat a tambourine with one hand. The flageolet had only three holes, and some notes were made by half-stopping these. The lowest note was produced by a force of wind equal to an ounce, the highest by one of fifty-six French pounds. A duck was, however, considered to be his chef-d'Å“uvre; it dabbled in the mire, swam, drank, quacked, raised and moved its wings, and dressed its feathers with its bill; it even extended its neck, took barley from the hand and swallowed it, during which process the muscles of the neck were seen in motion, and it also digested the food by means of materials provided for its solution in the35 stomach. The inventor made no secret of the machinery, which excited, at the time, great admiration. Maelzel, the inventor of the metronome, or time-measurer, frequently used to aid pupils in music, exhibited in Vienna in 1809, another automaton of singular power; which appeared in the uniform of a trumpeter in the Austrian dragoon regiment Albert, with his instrument placed to his mouth. When the figure was pressed on the left shoulder, it played not only the Austrian cavalry march, and all the signals of that army, but also a march and allegro by Weigl, which was accompanied by the whole orchestra. The dress of the figure was then changed into that of a French trumpeter of the guards, when it began to play a French cavalry march, all the signals, the march of Dussek, and an allegro of Pleyel, accompanied again by the full orchestra. Maelzel publicly wound up his instrument only twice on the left hip. The sound of the trumpet was pure and peculiarly agreeable. About thirty years ago, Maillardet exhibited, in Spring Gardens, a variety of automata, which the writer had an opportunity of seeing at a later period. One was the figure of a boy, who wrote sentences, and drew certain objects with remarkable promptitude and correctness. Another was a pianiste, seated at a piano-forte, on which she played eighteen tunes. All her movements were graceful. Before beginning a tune, she made a gentle inclination of the head36 to her auditors; her bosom heaved, and her eyes followed the motion of her fingers over the finger-board. When the automaton was once wound up, it would continue playing for an hour; and the principal part of the machinery employed was freely exposed to public view. It has been doubted whether the music was actually produced by the automaton: since the time now referred to, the writer has examined another, in which the keys of the instrument were certainly acted upon by the touch. He has also seen, at various times, several very curiously constructed automata: the figure of a lady, who could walk along a level surface, throwing out the limbs, and moving the head from side to side; a tippler, who could pour out wine from a decanter into a glass, open his mouth, and swallow the fluid, and thus proceed till the bottle was drained; and a performer on the slack rope, whose exceedingly rapid movements of the body, the arms, and the head, all consistent and graceful, were truly amazing. A very beautiful automaton was exhibited, a few years ago, in Paris, and subsequently in London. It appeared in a court suit, sitting at a table, in the attitude of writing. Several questions, inscribed on tablets, were placed on the table on which the whole apparatus stood, and visitors might select any one or more at pleasure. The tablet, containing a question, on being handed to the attendant, was placed in37 a drawer, and, as soon as it was closed, the figure traced on paper an appropriate reply. On the question being given, "Who may be volatile without a crime?" the answer was, "A butterfly." And as the figure could draw a response as well as write it, when the question was put, "What is the symbol of fidelity?" it drew, in outline, the form of a greyhound. In the same way it proceeded throughout the series of questions. In some instances, the effect of automata is increased by the exhibiter proposing certain questions, and receiving responses from the figure—as shaking the head, to denote a negative; or nodding, to indicate assent. It is evident that here the inquiries or remarks are thrown in to accord with the motions that the figure is contrived to make. When, however, a performer, as one has recently done, puts a whistle in the mouth of an automaton, and then, sitting down by its side, plays a tune on a guitar, desiring the figure to accompany him; the hasty sounds with which the figure seems inclined to begin, the irregularity with which it proceeds, and the long and loud closing note, may all be easily supplied by some confederate. Surprising as are the effects produced by many automata, it would be wrong to infer that their only results are the wonder of the multitude, or gain or applause to their inventors. "They gave rise," as sir David Brewster has remarked, "to the most ingenious mechanical devices, and introduced, among the higher38 order of artists, habits of nice and accurate execution in the formation of the most delicate pieces of machinery." Those combinations of wheels and pinions, which almost eluded observation, "reappeared in the stupendous mechanism of our spinning-machines and our steam-engines. The elements of the tumbling puppet were revived in the chronometer, which now conducts our navy through the ocean; and the shapeless wheel which directed the hand of the drawing automaton (of Maillardet,) has served, in the present age, to guide the movements of the tambouring-engine. Those mechanical wonders, which in one century enriched only the conjurer who used them, contributed in another to augment the wealth of the nation; and those automatic toys which once amused the vulgar, are now employed in extending the power, and promoting the civilisation of our species. In whatever way, indeed, the power of genius may invent or combine, and to whatever bad or even ludicrous purposes that invention or combination may be originally applied, society receives a gift which it can never lose; and though the value of the seed may not at once be recognised, though it may lie long unproductive in the ungenial soil of human knowledge, it will; some time or other, evolve its germ, and yield to mankind its natural and abundant harvest."D A singular fact is connected with the early history of the Astronomical Society of London.39 A valuable set of tables, for reducing the observed to the true places of stars, was in course of preparation, at the expense of the society, including above three thousand stars, and comprehending all known to those of the fifth magnitude, inclusive, and all the most useful of the sixth and seventh. An incident which now occurred, gave rise to one of the most extraordinary of modern inventions. To insure accuracy in the calculation of certain tables, separate computers had been employed; and two members of the society having been chosen to compare the results, detected so many errors, as to induce one of them to express his regret that the work could not be executed by a machine. For this, the other member, Mr. Babbage, at once replied, that "this was possible;" and, persevering in the inquiry which had thus suggested itself, he produced a machine for calculating tables with surprising accuracy. The calculating part of the machinery occupies a space of about ten feet broad, ten feet high, and five feet deep. It consists of seven steel axes, erected over one another, each of them carrying eighteen wheels, five inches in diameter, having on them small barrels, and inscribed with the symbols 0, 1, to 9. The machine calculates to eighteen decimal places, true to the last figure; but, by subsidiary contrivances, it is possible to calculate to thirty decimal places. Mr. Babbage has since contrived a machine, much more simple in its construction, and far more extensive in its application. 40 In thus enumerating various displays of mechanical genius, we are reminded that the prophet Isaiah, after describing the diverse labours of the husbandman, adds, "This also cometh forth from the Lord of hosts, which is wonderful in counsel, and excellent in working." In all the evidence we have of human talent, then, let us acknowledge that "every good gift and every perfect gift is from above, and cometh down from the Father of lights, with whom is no variableness, neither shadow of turning," Jas. i. 17. Would that the gifts of God were always used for the Divine glory! Sounds emitted from rocks have often been regarded as portentous. Mr. G. Bennett, when at Macao, had his attention directed to a mass of granite rocks, appearing as if separated by some convulsion of nature, many of which were found, when trodden on, to be movable. The first, and by far the most sonorous, was45 partially excavated underneath; and, by striking it upon the upper part, a deep sound, "like that of a church bell," was produced. "The battered appearance of the stone above," it is said, "bore several proofs of how many visitors had made this lion roar." Many of the other rocks were also sonorous, but not so loud as the first, and, from their situations, "they were movable when trodden on; but it could not be seen, whether, like the preceding, they were excavated, and, in consequence of being so, sonorous." In the chain of El-Heman, and not far from the Red Sea, is the Jebal Narkous, or "Mountain of the Bell." It forms one of a ridge of low calcareous hills, which are connected by a sandy plain, extending, with a gentle rise, to their base. It is composed of a light-coloured friable sandstone, about the same as the rest of the chain; but an inclined plane of almost impalpable sand rises at an angle of about forty degrees with the horizon, and is bounded by a semi-circle of rocks, presenting broken, abrupt, and pinnacled forms, and extending to the base of this remarkable hill. Its height is about four hundred feet. Lieutenant Wellsted observed, that the shape and arrangement of the rocks resembled, in some respects, a whispering-gallery; but he ascertained, by experiment, that their irregular surface rendered them but ill-adapted for the production of an echo. Seated on a rock at the base of the sloping eminence, he directed a Bedouin to ascend; and it was not till he had46 reached some distance that the lieutenant perceived the sand in motion, rolling down the hill to the depth of a foot. It did not, however, descend in one continued stream, but, as the Arab scrambled upwards, it spread out laterally and above, until a considerable portion of the surface was in motion. As the sand began to fall, the sounds produced might be compared to the faint strains of an Eolian harp when its strings first catch the breeze. When the sounds became more violently agitated by the increased velocity of the descent, the noise more nearly resembled that produced by drawing the moistened fingers over glass. As it reached the base, the reverberations attained the loudness of distant thunder, causing the rock on which lieutenant Wellsted was seated to vibrate; and the camels, animals not easily frightened, became so alarmed, that their drivers could only retain them with difficulty. The noise, it was remarked, did not issue from every part of the hill alike, the loudest being produced by disturbing the sand on the northern side, about twenty feet from the base, and about ten from the rocks that bound it in that direction. The tradition is, that the bells of a convent were buried here; the Bedouins trace the sounds to several wild and fanciful causes; but, in the experiment now described, it was evident that the sounds sometimes fell quicker on the ear, and at other times were more prolonged, according to the Arab's increasing or retarding the velocity of his descent. 47 Dr. Chladni made many curious experiments on the figures assumed by sand and similar substances, when strewed over vibrating sonorous bodies. The reader may easily try an experiment of this kind. Let a square piece of glass be taken, such as that used for windows, not less than four or five inches over, the edges of which are to be smoothed by grinding. Spread over the plate, as evenly as possible, a little sand, and, holding it between the thumb and fore-finger, in the middle, pass the bow of a violin against one of its edges, drawing it either upwards or downwards, in a direction perpendicular to its surface. A tremulous motion will be immediately observed, and the sand will assume some particular and fixed figure. If the bow be passed over the middle of one of the sides, the sand will arrange itself in the direction of the two diagonals, dividing the square into four isosceles triangles. If the bow be applied at any point which is one-fourth the length of the square from any angle, the arrangement of the sand will represent the two diameters of the square, dividing it into four equal figures of the same form. If the square be held at the two extremities of either diameter, and the bow be applied to the extremities of the other diameter, the sand will take the figure of an oval, having its major axis in the same direction as one of the diameters. Other experiments of the same kind have since been made by M. Voigt, and also by the celebrated Oersted. The latter covered a plate48 of metal or glass with the lycopodium seed, or the seed of the club-moss, instead of sand; he then tried to produce a sound in the manner of Chladni, and instantly he saw the dust distribute itself into a number of little regular tumuli, which put themselves in motion at their extremities, or formed the figures discovered by this naturalist. They always ranged themselves in the form of a curve, the convexity of which was in proportion to the point touched by the violin bow, or towards the point which has an analogous situation; the nearer that each of these little heaps was to these points, the greater was its height, a circumstance which gave remarkable regularity to the figure. The interior of the small elevations thus obtained, were in constant motion during the continuance of the sound, and the duration of the vibrations might be observed on a plate from four to six inches in diameter. At one moment the height increased, at another it diminished, and the dust had the appearance of arranging itself in small globules, which rolled one above another. We may now return from these very interesting facts, to others on a far larger scale. Near the Kom-el-Hett'an, or the mound of sandstone, which makes the site of one of the palaces and temples of Amunoph III., are two sitting colossi, which seem to assert the grandeur of ancient Thebes. The easternmost of the two is doubtless the statue reported by ancient authors to utter a sound at the rising49 of the sun. It was said to resemble the breaking of a metallic ring, or harp-string. The superstition of its Roman visitors ascribed the colossus to Memnon, and a multitude of inscriptions attributed to him miraculous powers. The memory of its daily performance is still retained in the traditional appellation of Salamat, "salutations," by the modern inhabitants of Thebes. It is said to have "saluted" the emperor Adrian and his queen Sabina twice; but some persons, of course of humble rank, were disappointed on their first visit, and obliged to return another morning to satisfy their curiosity. And yet there is ample reason to believe that the whole was an artifice of the priests. In the lap of the statue is a stone; and as sir Gardiner Wilkinson discovered, on examining the inscriptions, that one Ballilla had compared the sound the stone emitted, when struck, to the striking of brass, he determined to put the matter to the test. Accordingly, posting some peasants below, and ascending to the lap of the statue, he struck the sonorous block with a small hammer, and inquiring what was heard by the peasants, they answered, "You are striking brass." "This," says sir Gardiner, "convinced me that the sound was the sound that deceived the Romans, and led Strabo to observe that it appeared to him as the effect of a slight blow." "The Theban priests," he adds, "must have been considerable gainers by the credulity of those who visited their lion." 50 The reader who may have taken the delightful walk from Tunbridge Wells to the High Rocks, and examined particularly those huge masses, will not fail to remember the one called "the Bell Rock." On entering the space between this one and the next, it may be struck with a stick, when a sound will be heard like that produced, on a large metallic body being smitten. In the road cut by Napoleon between Savoy and France, and about two miles from Les Echelles, there is a gallery twenty-seven feet high and broad, and nine hundred and sixty feet in length, formed in the solid rock. When this road was nearly complete, and the excavations commenced at each end almost met, the partition was broken through by a pick-axe, and a loud and deep sound was heard. We are indebted to Mr. Bakewell for the following solution of this phenomenon. The mountain rises full one thousand feet above the passage, and fifteen hundred above the valley. The air, on the eastern side of the mountain, is sheltered both on the south and west from the sun's rays; and consequently must be much colder than on the western side. The mountain, therefore, formed a partition between the hot air of the valley, and the cold air of the ravines on the eastern side. When the opening was made, the cold, and therefore denser air, rushed into that rarefied by heat, and a loud report was produced, in the same manner as when a bladder, placed over an exhausted air-pump receiver, is burst. 51 Baron Humboldt informs us, on credible authority, that subterranean sounds, resembling the tones of an organ, are heard on the banks of the Oroonoko. He supposes that they arise from a difference of temperature between the external atmosphere and the air confined in the crevices of the adjacent granitic rocks. He concludes that, as the temperature of the confined air is greatly increased during the day from the conduction of heat by the rocks; and as the difference of temperature between it and the atmosphere will reach its maximum about sunrise, the sounds are produced by the escaping current. The following illustrative experiment is not a little curious:—If a tube formed of some elastic and sonorous substance be taken, and a jet of inflamed hydrogen be introduced, a musical sound will be heard. This will take place in a tube closed at one end, if it be large enough to admit a sufficient quantity of atmospheric air to support the combustion of the gas; but if the tube be open at both extremities, the musical sound will be clear and full. Various conclusions have been arrived at in reference to this phenomenon; but they have been set aside by the experiments of Mr. Faraday, who attributes the sounds produced by flames in tubes to a continual series of detonations or explosions. The first philosopher who exhibited the longitudinal vibration of solids was Dr. Chladni. According to him, the best method of producing52 these vibrations in rods, is by rubbing them, in the direction of their length, with some soft substance, covered with powdered resin, or by the finger. When glass tubes are employed, they should be rubbed with a piece of rag spread over with fine sand, the tube being held by one of the ends. "In all longitudinal vibrations," says the same writer, "the tones depend merely on the length of the sonorous body, and on the quality of the substance, the thickness and form being of no consideration; yet the tones are not varied by the specific gravity of the vibrating substance; for fir-wood, glass, and iron, give almost the same tone as brass, oak, and the shanks of tobacco-pipes." He also mentions several kinds of longitudinal vibration; in one, to use his own words, "there is a certain point in the middle at which the vibration of each half-stops; in the next there are two, each at the distance of a fourth part from the end; and, in the following, there are three, or more. The tones correspond with the natural series of the numbers 1, 2, 3, 4, etc. If a rod be fastened at one end, during the first kind of longitudinal vibration, the alternate expansion and contraction of the whole rod will take place in such a manner, that they stop at the fixed end; in the next tone there is a resting-point at the distance of one-third from the free end; and in the following there are two. The tones correspond with the numbers 1, 3, 5, 7, and the first of these tones is an octave lower than53 the first tone of the same rod when perfectly free." When examining the nature of sonorous bodies, Dr. Chladni imagined the possibility of producing musical sounds by rubbing glass tubes longitudinally. It, however, became a difficult question to determine in what way an instrument of this kind should be constructed. After much and long-continued unsuccessful thought, he returned home one evening exhausted with walking, and he had scarcely closed his eyes to fall asleep in his chair, when the arrangement he had so long been seeking, occurred to his mind. He soon after completed an instrument, which in every respect answered his expectations. The euphone, signifying an instrument having a pleasant sound, consists of forty-one fixed and parallel cylinders of glass, equal in length and thickness. In its external appearance it resembles a small writing-desk, which, when opened, presents a series of glass tubes about sixteen inches long, and the thickness of a quill. They are fixed in a perpendicular sounding-board, at the back of the instrument. When used, the tubes are wetted with a sponge, and stroked in the direction of their length with wet fingers; the intensity of the tone being varied by greater or less pressure. The singular phenomenon of sound occasioned by the vibration of soft iron, produced by a galvanic current, was recently discovered by Mr. Sage, and has been since verified by54 the observations of a French philosopher, M. Marian. The experiments were made on a bar of iron, which was fixed at the middle, in a horizontal position, each half being inclosed in a large glass tube. By appropriate arrangements, the galvanic circle was completed; and the longitudinal sound could be distinguished, although it was feeble. The origin of the sound has therefore been ascribed to a vibration in the interior of the iron bar; and to the same cause are probably attributable many phenomena. We now pass on to the violent agitation of the air, which is often productive of surprising results. A quantity of feathers, for example, was scattered one day over the market-place of Yarmouth, to the great astonishment of a large number of persons assembled there. But what was the cause? The timid considered that the phenomenon predicted some great calamity; the inquisitive indulged in a thousand conjectures; and the curious in natural history sagely accounted for it by a gale of wind in the north, blowing wild-fowl feathers from the island of St. Paul's! Yet, not one of them was right. No guess would explain the cause, and yet it arose from the prank of a frolicsome boy. Astley, afterwards well known as sir Astley Cooper, had taken two of his mother's pillows to the top of the church, and when he had climbed as far as he could up the steeple, he ripped them open, and scattered their contents to the wind. 55 The Philosophical Magazine contains an account of a singular snow phenomenon that occurred in Orkney. The paper was contributed by Mr. Clouston, of Stromness. "One night a heavy fall of snow took place, which covered the plain to a depth of several inches. 'Upon this pure carpet,' says the writer, 'there rested next morning thousands of large masses of snow, which contrasted strangely with its smooth surface.' These occurred generally in patches, from one acre to a hundred in extent, while clusters were often half-a-mile asunder. The fields so covered looked as if they had been scattered over with cart-loads of manure, and the latter covered with snow; but, on examination, the masses were all found to be cylindrical, like hollow fluted rollers, or ladies' swan-down muffs, bearing a strong resemblance to the latter. The largest measured 3½ feet long, and 7 feet in circumference. The centres were nearly but not quite hollow; and by placing the head within when the sun was bright, the concentric structure of the cylinder was apparent. They did not occur in any of the adjoining parishes, and were limited to a space of about five miles. The first idea, as to the origin of these bodies, was, that they had fallen from the clouds, and portended some direful calamity. But, had they fallen from the atmosphere, their symmetry and loose texture must have been destroyed. The writer having examined them, was soon convinced that they56 had been formed by the wind rolling up the snow as boys form snow-balls. Their round form, concentric structure, fluted surface, and position with respect to the weather side of eminences, proved this; and it was also evident, from the fact of their lying lengthways, with their sides to the wind; and sometimes their tracks were visible in the snow for twenty or thirty yards in the windward direction, whence they had evidently gathered up their concentric layers." A correspondent of the Athenæum, in a letter, dated Naples, January 3rd, 1847, mentions another very striking phenomenon. He was standing on a cliff overlooking the Mediterranean, accompanied by an Italian friend. The air was perfectly tranquil, and yet in a moment he felt himself grasped and encircled, as it were, by an unseen and irresistible power, and, in spite of his struggles, he felt himself sailing through the air at a balloon speed. After a few moments of his aërial travelling, he was pitched halfway down the cliff into the centre of an empty lime-kiln, not far from the sea. Nor was he alone; there was another heavy fall; for his friend stood opposite him. As they were encircled by a force, equal at all points, though the shock was violent, they fell on their feet, but sank directly to the ground, and there sat gazing at one another, unable either to move or speak. Happily, no bones were broken; but so severe were the internal57 injuries experienced, as to confine them to their beds for some time, and they expect the internal effects of their involuntary and dangerous voyage to remain for a considerable time. As the population of the coasts of the Mediterranean are exceedingly ignorant and superstitious, it is not surprising that the people in the neighbourhood said that the Shal'ombre, the evil spirits, in the lime-kiln, must have drawn the travellers in; and attributed their deliverance to the intercession of the souls in purgatory for the acts of charity they had performed! To avoid any calamities, which the mariners of Naples generally attribute to demoniacal influence, they resort to the practice of witchcraft. Few are the barks that venture to the coral fishery, or the coasting-trade, without having a magician on board. Persons of this class, however, who practise the art supposed to be required at sea, or who even reveal it to others, cannot receive absolution from an ordinary confessor. It is comprehended under the head of "malaficia," one of the reserved sins to be found in the printed list of directions appended to every confessional in Italy. And yet, were witchcraft available in any case, it could not be in connexion with the natural operation, which the mariners call "trombe di mare." The travellers suffered, in fact, from a strong wind, connected with the phenomenon of a water spout, observed, for the most part, at sea, but sometimes also on shore.58 Its usual appearance is that of a dense cloud, like a conical pillar, which seems to consist of condensed vapour, and is seen to descend with the apex downwards. When over the sea, there are generally two cones, one projecting from the cloud, the other from the water below it. They sometimes unite, and then a flash of lightning is observed; on other occasions, they disperse before any junction takes place. The effect appears to be, at least partly, electrical; the cones being in opposite states, the positive and negative attraction ensue; and, when union takes place, which is indicated by the flash, the bodies are restored to their equilibrium. The magicians on the coast practise what they call the art of "cutting" the "trombe." As soon as it is seen approaching in the direction of a boat, the wizard goes forward, sends all the crew aft, that they may not be eye-witnesses of what he does; and using certain signs or words, and making a movement with his arms as if in the act of cutting, the enemy falls in two, and disappears. We are reminded by these circumstances of "the news from the country," which the Spectator describes as brought to him by sir Roger de Coverley. One part of it was, that Moll White was dead, and that about a month after one of the baronet's barns fell down, which led to the shrewd remark: "I do not think the old woman had anything to do with it." Nor do we think that the wizard of the Mediterranean has anything to do with "cutting the59 wind." The probability is, that he seizes on the time for his movements, which, from experience, he knows to precede the dispersion of the cloud, and thus acquires credit to which he has not the slightest claim. This chapter may appropriately be concluded by a reference to the waters of the earth, which are often represented as endued with a supernatural power. The Ilissus, rising on Mount Hymettus, to the east of Athens, and overflowing its banks, furnishes a supply of excellent water to the monastery of Sergiani. On one side, are three small caverns in the rock, with double entrances; apparently the work of nature, but probably aided by art. They are still supposed, as they have been during past ages, to have a mystic virtue; and "no remedy," says Dodwell, is considered so efficacious for a sick child as "to drag it two or three times from one cave to another; by which it is either killed or cured. Several ancient wells are observed in the rock on each side of the river. Near these, the foundation of a wall crosses the bed of the Ilissus." Springs, in various parts of this and other countries, alternately ebbing and flowing, have been, and are still, in some cases, supposed to be under the ban of witchcraft. And yet the phenomena are easily explained by natural laws. If the shorter end of a bent tube, a, whose branches are of an unequal length, be placed in a basin of water, and the air is drawn from it, we have a syphon, which will decant the water60 into any vessel. Now such tubes as these are naturally formed in the earth, and if the water be drained into a cavity, b, having a syphon-like channel, c, it is evident that it will flow as long as the syphon can act, and it will then cease. | | | | |
No comments:
Post a Comment
Keep a civil tongue.